Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.395
Filtrar
1.
Biol Res ; 56(1): 41, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37438828

RESUMO

BACKGROUND: Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS: We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS: HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.


Assuntos
Oxigenoterapia Hiperbárica , Transdução de Sinais , Células-Tronco , Animais , Camundongos , Proliferação de Células , Intestinos/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Oxigênio , Sirolimo/farmacologia , Células-Tronco/efeitos dos fármacos
2.
J Biol Chem ; 299(5): 104650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972789

RESUMO

Human trophoblast stem cells (hTSCs) have emerged as a powerful tool to model early placental development in vitro. Analogous to the epithelial cytotrophoblast in the placenta, hTSCs can differentiate into cells of the extravillous trophoblast (EVT) lineage or the multinucleate syncytiotrophoblast (STB). Here we present a chemically defined culture system for STB and EVT differentiation of hTSCs. Notably, in contrast to current approaches, we neither utilize forskolin for STB formation nor transforming growth factor-beta (TGFß) inhibitors or a passage step for EVT differentiation. Strikingly, the presence of a single additional extracellular cue-laminin-111-switched the terminal differentiation of hTSCs from STB to the EVT lineage under these conditions. In the absence of laminin-111, STB formation occurred, with cell fusion comparable to that obtained with differentiation mediated by forskolin; however, in the presence of laminin-111, hTSCs differentiated to the EVT lineage. Protein expression of nuclear hypoxia-inducible factors (HIF1α and HIF2α) was upregulated during EVT differentiation mediated by laminin-111 exposure. A heterogeneous mixture of Notch1+ EVTs in colonies and HLA-G+ single-cell EVTs were obtained without a passage step, reminiscent of heterogeneity in vivo. Further analysis showed that inhibition of TGFß signaling affected both STB and EVT differentiation mediated by laminin-111 exposure. TGFß inhibition during EVT differentiation resulted in decreased HLA-G expression and increased Notch1 expression. On the other hand, TGFß inhibition prevented STB formation. The chemically defined culture system for hTSC differentiation established herein facilitates quantitative analysis of heterogeneity that arises during hTSC differentiation and will enable mechanistic studies in vitro.


Assuntos
Diferenciação Celular , Técnicas Citológicas , Laminina , Células-Tronco , Trofoblastos , Humanos , Diferenciação Celular/efeitos dos fármacos , Colforsina/farmacologia , Colforsina/metabolismo , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Laminina/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Meios de Cultura/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas Citológicas/métodos
3.
Elife ; 122023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847614

RESUMO

Bacillus thuringiensis subsp. kurstaki (Btk) is a strong pathogen toward lepidopteran larvae thanks to specific Cry toxins causing leaky gut phenotypes. Hence, Btk and its toxins are used worldwide as microbial insecticide and in genetically modified crops, respectively, to fight crop pests. However, Btk belongs to the B. cereus group, some strains of which are well known human opportunistic pathogens. Therefore, ingestion of Btk along with food may threaten organisms not susceptible to Btk infection. Here we show that Cry1A toxins induce enterocyte death and intestinal stem cell (ISC) proliferation in the midgut of Drosophila melanogaster, an organism non-susceptible to Btk. Surprisingly, a high proportion of the ISC daughter cells differentiate into enteroendocrine cells instead of their initial enterocyte destiny. We show that Cry1A toxins weaken the E-Cadherin-dependent adherens junction between the ISC and its immediate daughter progenitor, leading the latter to adopt an enteroendocrine fate. Hence, although not lethal to non-susceptible organisms, Cry toxins can interfere with conserved cell adhesion mechanisms, thereby disrupting intestinal homeostasis and endocrine functions.


Assuntos
Toxinas de Bacillus thuringiensis , Drosophila melanogaster , Células-Tronco , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis/efeitos adversos , Adesão Celular , Produtos Agrícolas , Plantas Geneticamente Modificadas , Células-Tronco/efeitos dos fármacos
4.
Genes Genomics ; 45(4): 413-427, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36445571

RESUMO

BACKGROUND: The retention rate in autologous fat grafting is an increasing concern for surgeons and patients. Our previous research verified that thymosin beta 4 (Tß4) positively affected fat survival, while the mechanism was unknown. The endothelial cells (ECs) and exosomes derived from adipose-derived stem cells (ADSCs) were regarded to play a critical role in fat transplantation. OBJECTIVE: This study aimed to evaluate the effect of exosomes derived from Tß4-treated ADSCs on EC proliferation and to identify the exosomal microRNA (miRNA) profile compared with the Tß4-untreated group. Additionally, this research intended to recognize the related molecules and signaling pathways in the Tß4-treated group with potential roles in fat transplants. METHODS: ADSCs were collected from patients who underwent liposuction surgery. Depending on whether the medium was supplemented with exogenous Tß4 or not, exosomes derived from cultured ADSCs were divided into the Tß4-Exos group and Con-Exos group. Exosome uptake and cell counting kit-8 (CCK-8) assays assessed the influence of Tß4-Exos on EC proliferation. The exosomal miRNAs of the two groups were analyzed by next-generation sequencing. With the criteria at the |log2 (fold change)| ≥ 1 and p-value < 0.05, up-regulated and down-regulated differentially expressed miRNAs (DEMs) were obtained. Prediction databases were used to predict the downstream mRNAs for DEMs. And then, overlapping genes for the up-regulated DEMs and the down-regulated were screened out, followed by enrichment analysis, protein-protein interaction network construction, and the gene cluster and hub gene identification. RESULTS: ADSCs were obtained from four female patients. The exosome uptake and CCK-8 assays showed that the Tß4-Exos could increase cell growth rate compared with the control group (DMEM-H + PBS). In Tß4-Exos and Con-Exos groups, 2651 exosomal miRNAs were recognized, with 80 up-regulated and 99 down-regulated DEMs according to the criteria. After the prediction, 621 overlapping genes for the up-regulated and 572 for the down-regulated DEMs were screened. The subsequent bioinformatics analysis found specific molecules and pathways related to the positive effect on fat survival. CONCLUSIONS: The exosomes derived from Tß4-treated ADSCs probably positively affect EC proliferation. Compared with the Con-Exos group, several exosomal DEMs, genes, and pathways were distinguished. These findings of this exploratory study provide the potential direction for future in-depth research on fat grafting.


Assuntos
Tecido Adiposo , Exossomos , Células-Tronco , Timosina , Transplante Autólogo , Adulto , Feminino , Humanos , Adulto Jovem , Tecido Adiposo/citologia , Tecido Adiposo/transplante , Proliferação de Células , Análise por Conglomerados , Exossomos/química , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , MicroRNAs/análise , MicroRNAs/genética , Ligação Proteica , Mapas de Interação de Proteínas , Análise de Sequência de RNA , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Timosina/farmacologia
5.
J Cell Mol Med ; 26(23): 5929-5942, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36412036

RESUMO

Different growth factors can regulate stem cell differentiation. We used keratinocyte growth factor (KGF) to direct adipose-derived stem cells (ASCs) differentiation into keratinocytes. To enhance KGF bioavailability, we targeted KGF for collagen by fusing it to collagen-binding domain from Vibrio mimicus metalloprotease (vibrioCBD-KGF). KGF and vibrioCBD-KGF were expressed in Escherichia coli and purified to homogeneity. Both proteins displayed comparable activities in stimulating proliferation of HEK-293 and MCF-7 cells. vibrioCBD-KGF demonstrated enhanced collagen-binding affinity in immunofluorescence and ELISA. KGF and vibrioCBD-KGF at different concentrations (2, 10, and 20 ng/ml) were applied for 21 days on ASCs cultured on collagen-coated plates. Keratinocyte differentiation was assessed based on morphological changes, the expression of keratinocyte markers (Keratin-10 and Involucrin), and stem cell markers (Collagen-I and Vimentin) by real-time PCR or immunofluorescence. Our results indicated that the expression of keratinocyte markers was substantially increased at all concentrations of vibrioCBD-KGF, while it was observed for KGF only at 20 ng/ml. Immunofluorescence staining approved this finding. Moreover, down-regulation of Collagen-I, an indicator of differentiation commitment, was more significant in samples treated with vibrioCBD-KGF. The present study showed that vibrioCBD-KGF is more potent in inducing the ASCs differentiation into keratinocytes compared to KGF. Our results have important implications for effective skin regeneration using collagen-based biomaterials.


Assuntos
Diferenciação Celular , Fator 7 de Crescimento de Fibroblastos , Queratinócitos , Células-Tronco , Humanos , Colágeno , Colágeno Tipo I/genética , Fator 7 de Crescimento de Fibroblastos/farmacologia , Células HEK293 , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
6.
Biopreserv Biobank ; 20(4): 374-383, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35984941

RESUMO

Cryopreservation of spermatogonial stem cells (SSCs) is an important method to restore and maintain fertility in preadolescent children suffering from cancer. For protection of SSCs from cryoinjury, various antioxidant agents have been used. The aim of this study was to assess the antiapoptotic and antioxidant effects of melatonin in frozen-thawed SSCs. SSCs were isolated from testes of neonatal mice (3-6 days old) and their purities were measured by flow cytometry with promyelocytic leukemia zinc finger protein. After culturing, the cells were frozen in two groups (1) control and (2) melatonin (100 µM) and stored for 1 month. Finally, the cell viability, colonization rate, expression of Bcl-2 and BAX gene, and intracellular reactive oxygen species (ROS) were evaluated after freezing-thawing. Melatonin increased the viability and colonization of SSCs and Bcl-2 gene expression. It also diminished BAX gene expression and intracellular ROS. The results of this study show that melatonin with antioxidant and antiapoptotic effects can be used as an additive for freezing and long-term storage of cells and infertility treatment in the clinic.


Assuntos
Antioxidantes , Melatonina , Espermatogônias , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Apoptose , Proliferação de Células , Criopreservação/métodos , Congelamento , Masculino , Melatonina/farmacologia , Camundongos , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio , Espermatogônias/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Proteína X Associada a bcl-2
7.
Adv Mater ; 34(46): e2204287, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35901292

RESUMO

MicroRNA (miR)-based therapy shows strong potential; however, structural limitations pose a challenge in fully exploiting its biomedical functionality. Tetrahedral framework DNA (tFNA) has proven to be an ideal vehicle for miR therapy. Inspired by the ancient Chinese myth "Sun and Immortal Birds," a novel bioswitchable miR inhibitor delivery system (BiRDS) is designed with three miR inhibitors (the three immortal birds) and a nucleic acid core (the central sun). The BiRDS fuses miR inhibitors within the framework, maximizing their loading capacity, while allowing the system to retain the characteristics of small-sized tFNA and avoiding uncertainty associated with RNA exposure in traditional loading protocols. The RNase H-responsive sequence at the tail of each "immortal bird" enables the BiRDS to transform from a 3D to a 2D structure upon entering cells, promoting the delivery of miR inhibitors. To confirm the application potential, the BiRDS is used to deliver the miR-31 inhibitor, with antiaging effects on hair follicle stem cells, into a skin aging model. Superior skin penetration ability and RNA delivery are observed with significant anti-aging effects. These findings demonstrate the capability and editability of the BiRDS to improve the stability and delivery efficacy of miRs for future innovations.


Assuntos
DNA , Sistemas de Liberação de Medicamentos , MicroRNAs , Envelhecimento da Pele , DNA/administração & dosagem , DNA/uso terapêutico , MicroRNAs/antagonistas & inibidores , Pele , Humanos , Folículo Piloso/citologia , Células-Tronco/efeitos dos fármacos
8.
Am J Sports Med ; 50(9): 2488-2496, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35666137

RESUMO

BACKGROUND: Degenerative rotator cuff tendinopathy (RCT) is associated with the senescence of tendon-derived stem cells (TDSCs). Nonsteroidal anti-inflammatory drugs have been demonstrated to alleviate age-associated inflammation (inflamm-aging)-induced cellular senescence of skeletal stem/progenitor cells. However, whether they can alleviate degenerative RCT through reducing inflamm-aging-related TDSC senescence is still unknown. PURPOSE: To assess whether celecoxib can prevent the inflamm-aging-related cellular senescence of TDSCs. STUDY DESIGN: Controlled laboratory study. METHODS: TDSCs were isolated from degenerative RCT tendons (S-TDSCs) and healthy hamstring tendons (Y-TDSCs), and the cellular senescence of TDSCs was evaluated. Thereafter, the senescent TDSC-conditioned medium (SEN-CM) was collected to culture Y-TDSCs with or without celecoxib. The effects of celecoxib on TDSC senescence were examined by assaying the expression of aging-related markers. Furthermore, the level of the NF-κB pathway was determined by Western blot analysis to explore the underlying mechanism. Its effects on preventing dysfunction of inflamm-aging-induced senescent TDSCs were also determined using multilineage differentiation assay. RESULTS: S-TDSCs showed increased senescence-associated ß-galactosidase activity and enhanced expression of γ-H2AX, p21CIP1A, p16INK4A, and senescence-associated secretory phenotype factors. SEN-CM accelerated the senescence progress of Y-TDSCs, resulting in an increase in senescence markers. To some extent, celecoxib treatment could prevent the detrimental effects of inflamm-aging on Y-TDSCs. The level of the NF-κB pathway was increased in the SEN-CM group but decreased with the use of celecoxib. Moreover, the reduced senescence of TDSCs resulted in preservation of the TDSC tenogenic potential. CONCLUSION: Celecoxib treatment can prevent inflamm-aging-induced TDSC senescence, which holds potential for alleviating the development of degenerative RCT. CLINICAL RELEVANCE: In addition to relieving the symptoms of patients with RCT, treatment with celecoxib, a common nonsteroidal anti-inflammatory drug, may defer the development of RCT and prevent rotator cuff tears by delaying TDSC senescence.


Assuntos
Celecoxib , Senescência Celular , Células-Tronco , Tendinopatia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Celecoxib/metabolismo , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Diferenciação Celular , Senescência Celular/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Manguito Rotador/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo , Tendões/efeitos dos fármacos , Tendões/patologia
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 354-359, 2022 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-35426798

RESUMO

OBJECTIVE: To investigate the the effects of leptin on the proliferation, differentiation and PTEN expression of rat retinal progenitor cells (RPCs) cultured under hypoxic condition. METHODS: SD rat RPCs were cultured in normoxic conditions or exposed to hypoxia in the presence of 0, 0.3, 1.0, 3.0, 10, and 30 nmol/L leptin for 12, 48 and 72 h, and the cell viability was assessed using cell counting kit 8 (CCK 8) assay. The RPCs in primary culture were divided into control group, hypoxia group, and hypoxia+leptin group, and after 48 h of culture, the cell medium was replaced with differentiation medium and the cells were further cultured for 6 days. Immunofluorescence staining was employed to detect the cells positive for ß-tubulin III and GFAP, and Western blotting was used to examine the expression of PTEN at 48 h of cell culture. RESULTS: The first generation of RPCs showed suspended growth in the medium with abundant and bright cellular plasma and formed mulberry like cell spheres after 2 days of culture. Treatment with low-dose leptin (below 3.0 nmol/L) for 48 h obviously improved the viability of RPCs cultured in hypoxia, while at high concentrations (above 10 nmol/L), leptin significantly suppressed the cell viability (P < 0.05). The cells treated with 3.0 nmol/L leptin for 48 h showed the highest viability (P < 0.05). After treatment with 3.0 nmol/L leptin for 48 h, the cells with hypoxic exposure showed similar GFAP and ß-tubulin Ⅲ positivity with the control cells (P>0.05), but exhibited an obvious down-regulation of PTEN protein expression compared with the control cells (P < 0.05). CONCLUSION: In rat RPCs with hypoxic exposure, treatment with low dose leptin can promote the cell proliferation and suppress cellular PTEN protein expression without causing significant effects on cell differentiation.


Assuntos
Leptina , Retina , Células-Tronco , Animais , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Leptina/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/citologia , Retina/efeitos dos fármacos , Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tubulina (Proteína)
10.
Mar Drugs ; 20(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323480

RESUMO

Fucoidan, a marine-sulfated polysaccharide derived from brown algae, has been recently spotlighted as a natural biomaterial for use in bone formation and regeneration. Current research explores the osteoinductive and osteoconductive properties of fucoidan-based composites for bone tissue engineering applications. The utility of fucoidan in a bone tissue regeneration environment necessitates a better understanding of how fucoidan regulates osteogenic processes at the molecular level. Therefore, this study designed a fucoidan and polydopamine (PDA) composite-based film for use in a culture platform for periodontal ligament stem cells (PDLSCs) and explored the prominent molecular pathways induced during osteogenic differentiation of PDLSCs through transcriptome profiling. Characterization of the fucoidan/PDA-coated culture polystyrene surface was assessed by scanning electron microscopy and X-ray photoelectron spectroscopy. The osteogenic differentiation of the PDLSCs cultured on the fucoidan/PDA composite was examined through alkaline phosphatase activity, intracellular calcium levels, matrix mineralization assay, and analysis of the mRNA and protein expression of osteogenic markers. RNA sequencing was performed to identify significantly enriched and associated molecular networks. The culture of PDLSCs on the fucoidan/PDA composite demonstrated higher osteogenic potency than that on the control surface. Differentially expressed genes (DEGs) (n = 348) were identified during fucoidan/PDA-induced osteogenic differentiation by RNA sequencing. The signaling pathways enriched in the DEGs include regulation of the actin cytoskeleton and Ras-related protein 1 and phosphatidylinositol signaling. These pathways represent cell adhesion and cytoskeleton organization functions that are significantly involved in the osteogenic process. These results suggest that a fucoidan/PDA composite promotes the osteogenic potential of PDLSCs by activation of critical molecular pathways.


Assuntos
Hidrogéis/farmacologia , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Polímeros/farmacologia , Polissacarídeos/farmacologia , Células-Tronco/efeitos dos fármacos , Citoesqueleto de Actina/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogéis/química , Indóis/química , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/genética , Polímeros/química , Polissacarídeos/química , Mapas de Interação de Proteínas , Células-Tronco/citologia , Células-Tronco/metabolismo , Propriedades de Superfície , Undaria/química
11.
J Pharmacol Sci ; 148(3): 281-285, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35177206

RESUMO

This study aimed to elucidate the role of nitric oxide (NO) in intestinal stem cells in methotrexate-induced ileal mucositis in rats. Methotrexate induced the mRNA expressions of the Wnt/ß-catenin target genes Wnt3a, Sox9, and Lgr5 and the Wnt-antagonist gene sFRP-1 and the protein expressions of Lgr5 and sFRP-1. Methotrexate also induced Lgr5+ cells and lysozyme+ cells. A non-selective NO inhibitor inhibited the methotrexate induction of Wnt/ß-catenin target genes and Lgr5+ cells but enhanced that of sFRP-1 expression. Thus, methotrexate mediates the integrity of intestinal stem cells partly through NO-dependent Wnt/ß-catenin signaling and may enhance tolerability to methotrexate-induced injury.


Assuntos
Íleo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Metotrexato/efeitos adversos , Mucosite/genética , Mucosite/patologia , Óxido Nítrico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Expressão Gênica/efeitos dos fármacos , Masculino , Mucosite/induzido quimicamente , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar
12.
Bioengineered ; 13(3): 6558-6566, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35220882

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) are a class of pluripotent stem cells isolated from the adipose tissue; they can differentiate into osteoblasts after induction and play an important role in bone repair. EGFL6 protein is secreted by adipocytes and osteoblasts and can promote endothelial cell migration and angiogenesis. This study aimed to explore the effect of recombinant EGFL6 protein on the osteogenic differentiation of ADSCs. The cells were incubated with fluorescein isothiocyanate-conjugated antibodies and analyzed by flow cytometry. Alizarin red staining and alkaline phosphatase staining were used to detect the osteogenic differentiation ability. mRNA expression was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Protein expression was determined using Western blotting. The osteogenic differentiation ability of ADSCs isolated from the adipose tissue was significantly weakened after EGFL6 knockdown; this ability was restored upon the addition of EGFL6 recombinant protein. BMP2 knockdown inhibited the effect of EGFL6 recombinant protein on osteogenic differentiation. EGFL6 recombinant protein promoted osteogenic differentiation of ADSCs through the BMP2/SMAD4 signaling pathway. This may provide a potential target for the osteogenic differentiation of ADSCs.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Osteogênese/efeitos dos fármacos , Proteína Smad4/genética , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Adipócitos/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/farmacologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216086

RESUMO

Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin's signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Melatonina/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Humanos
14.
Biomed Res Int ; 2022: 5401461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198635

RESUMO

INTRODUCTION: Chitosan is a natural biopolymer that attracted enormous attention in biomedical fields. The main components of regenerative endodontic procedures (REPs), as well as tissue engineering, are scaffolds, stem cells, and growth factors. As one of the basic factors in the REPs is maintaining vascularization, this study was aimed at developing basic fibroblast growth factor- (bFGF-) loaded scaffolds and investigating their effects on the angiogenic induction in human dental pulp stem cells (hDPSCs). METHODS: Poly (ε-caprolactone) (PCL)/chitosan- (CS-) based highly porous scaffold (PCL/CS) was prepared and evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. The adhesion and survival potency of seeded cells were assessed by SEM and MTT assays, respectively. The amount of angiogenic markers was investigated in gene and protein levels by real-time PCR and western blotting assays, respectively. RESULTS: Based on our findings, the SEM and FTIR tests confirmed the appropriate structure of synthesized scaffolds. Besides, the adhesion and survival rate of cells and the levels of VEGFR-2, Tie2, and Angiopoietin-1 genes were increased significantly in the PCL/CS/bFGF group. Also, the western blotting results showed the upregulation of these markers at protein levels, which were considerably higher at the PCL/CS/bFGF group (P < 0.05). CONCLUSIONS: On a more general note, this study demonstrates that the bFGF-loaded PCL/CS scaffolds have the potential to promote angiogenesis of hDPSCs, which could provide vitality of dentin-pulp complex as the initial required factor for regenerative endodontic procedures.


Assuntos
Quitosana/farmacologia , Polpa Dentária/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Tecidos Suporte , Células Cultivadas , Feminino , Humanos , Hidrogéis/farmacologia , Adulto Jovem
15.
Gut Microbes ; 14(1): 2018898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35012435

RESUMO

Acute intestinal mucositis is a common off-target effect of chemotherapy, leading to co-morbidities such as vomiting, diarrhea, sepsis, and death. We previously demonstrated that the presence of enteric bacteria modulates the extent of jejunal epithelial damage induced by doxorubicin (DXR) in mice. Despite conventional thinking of the crypt as a sterile environment, recent evidence suggests that bacterial signaling influences aISC function. In this study, we labeled aISCs using transgenic Lgr5-driven fluorescence or with immunostaining for OLFM4. We examined the effect of DXR in both germ free (GF) mice and mice depleted of microbiota using an established antimicrobial treatment protocol (AMBx). We found differences in DXR-induced loss of aISCs between GF mice and mice treated with AMBx. aISCs were decreased after DXR in GF mice, whereas AMBx mice retained aISC expression after DXR. Neither group of mice exhibited an inflammatory response to DXR, suggesting the difference in aISC retention was not due to differences in local tissue inflammation. Therefore, we suspected that there was a protective microbial signal present in the AMBx mice that was not present in the GF mice. 16S rRNA sequencing of jejunal luminal contents demonstrated that AMBx altered the fecal and jejunal microbiota. In the jejunal contents, AMBx mice had increased abundance of Ureaplasma and Burkholderia. These results suggest pro-survival signaling from microbiota in AMBx-treated mice to the aISCs, and that this signaling maintains aISCs in the face of chemotherapeutic injury. Manipulation of the enteric microbiota presents a therapeutic target for reducing the severity of chemotherapy-associated mucositis.


Assuntos
Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , Jejuno/efeitos dos fármacos , Mucosite/prevenção & controle , Células-Tronco/efeitos dos fármacos , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antineoplásicos/administração & dosagem , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Humanos , Jejuno/citologia , Jejuno/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mucosite/microbiologia , Células-Tronco/citologia , Fatores de Tempo
16.
Nat Commun ; 13(1): 261, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017529

RESUMO

Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Antracenos/farmacologia , Cromogranina A/metabolismo , Endocanabinoides/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Peptídeo YY/metabolismo , Quinolonas/farmacologia , Rimonabanto/farmacologia , Transdução de Sinais , Somatostatina/metabolismo , Fatores de Transcrição/metabolismo
17.
J Radiat Res ; 63(2): 149-157, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021216

RESUMO

Intestinal stem cells (ISCs) are essential for the regeneration of intestinal cells upon radiation or chemical agent damage. As for radiation-induced damage, the expression of AIM2, YAP, TLR3, PUMA or BVES can aggravate ISCs depletion, while the stimulation of TLR5, HGF/MET signaling, Ass1 gene, Slit/Robo signaling facilitate the radio-resistance of ISCs. Upon chemical agent treatment, the activation of TRAIL or p53/PUMA pathway exacerbate injury on ISCs, while the increased levels of IL-22, ß-arrestin1 can ease the damage. The transformation between reserve ISCs (rISCs) maintaining quiescent states and active ISCs (aISCs) that are highly proliferative has obtained much attention in recent years, in which ISCs expressing high levels of Hopx, Bmi1, mTert, Krt19 or Lrig1 are resistant to radiation injury, and SOX9, MSI2, clusterin, URI are essential for rISCs maintenance. The differentiated cells like Paneth cells and enteroendocrine cells can also obtain stemness driven by radiation injury mediated by Wnt or Notch signaling. Besides, Mex3a-expressed ISCs can survive and then proliferate into intestinal epithelial cells upon chemical agent damage. In addition, the modulation of symbiotic microbes harboring gastrointestinal (GI) tract is also a promising strategy to protect ISCs against radiation damage. Overall, the strategies targeting mechanisms modulating ISCs activities are conducive to alleviating GI injury of patients receiving chemoradiotherapy or victims of nuclear or chemical accident.


Assuntos
Mucosa Intestinal , Células-Tronco , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos , Mucosa Intestinal/citologia , Intestinos/citologia , Proteínas Musculares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/efeitos da radiação
18.
Cells ; 11(2)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053396

RESUMO

Patients with Alzheimer's disease suffer from a decrease in brain mass and a prevalence of amyloid-ß plaques. These plaques are thought to play a role in disease progression, but their exact role is not entirely established. We developed an optogenetic model to induce amyloid-ß intracellular oligomerization to model distinct disease etiologies. Here, we examine the effect of Wnt signaling on amyloid in an optogenetic, Drosophila gut stem cell model. We observe that Wnt activation rescues the detrimental effects of amyloid expression and oligomerization. We analyze the gene expression changes downstream of Wnt that contribute to this rescue and find changes in aging related genes, protein misfolding, metabolism, and inflammation. We propose that Wnt expression reduces inflammation through repression of Toll activating factors. We confirm that chronic Toll activation reduces lifespan, but a decrease in the upstream activator Persephone extends it. We propose that the protective effect observed for lithium treatment functions, at least in part, through Wnt activation and the inhibition of inflammation.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Drosophila melanogaster/metabolismo , Intestinos/patologia , Células-Tronco/patologia , Via de Sinalização Wnt , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/embriologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Optogenética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
19.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055155

RESUMO

This study aimed at engineering cytocompatible and injectable antibiotic-laden fibrous microparticles gelatin methacryloyl (GelMA) hydrogels for endodontic infection ablation. Clindamycin (CLIN) or metronidazole (MET) was added to a polymer solution and electrospun into fibrous mats, which were processed via cryomilling to obtain CLIN- or MET-laden fibrous microparticles. Then, GelMA was modified with CLIN- or MET-laden microparticles or by using equal amounts of each set of fibrous microparticles. Morphological characterization of electrospun fibers and cryomilled particles was performed via scanning electron microscopy (SEM). The experimental hydrogels were further examined for swelling, degradation, and toxicity to dental stem cells, as well as antimicrobial action against endodontic pathogens (agar diffusion) and biofilm inhibition, evaluated both quantitatively (CFU/mL) and qualitatively via confocal laser scanning microscopy (CLSM) and SEM. Data were analyzed using ANOVA and Tukey's test (α = 0.05). The modification of GelMA with antibiotic-laden fibrous microparticles increased the hydrogel swelling ratio and degradation rate. Cell viability was slightly reduced, although without any significant toxicity (cell viability > 50%). All hydrogels containing antibiotic-laden fibrous microparticles displayed antibiofilm effects, with the dentin substrate showing nearly complete elimination of viable bacteria. Altogether, our findings suggest that the engineered injectable antibiotic-laden fibrous microparticles hydrogels hold clinical prospects for endodontic infection ablation.


Assuntos
Antibacterianos/farmacologia , Clindamicina/farmacologia , Doenças da Polpa Dentária/microbiologia , Gelatina/química , Metacrilatos/química , Metronidazol/farmacologia , Células-Tronco/citologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Células Cultivadas , Clindamicina/química , Doenças da Polpa Dentária/tratamento farmacológico , Humanos , Hidrogéis , Injeções , Metronidazol/química , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Células-Tronco/efeitos dos fármacos
20.
Biomed Pharmacother ; 147: 112649, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051858

RESUMO

Ankyrin repeat domain 22 (ANKRD22) is a nuclear-encoded mitochondrial membrane protein that is highly expressed in normal gastric mucosal epithelial cells and activated macrophages. As a regulator of mitochondrial Ca2+, ANKRD22 could help repair damaged gastric mucosa by promoting the mobilization of LGR5+ gastric epithelial cells via the upregulation of Wnt/ß-catenin pathway activity in a mouse model. Furthermore, the inhibition of ANKRD22 alleviated the macrophage activation-mediated inflammatory response by reducing the phosphorylation of nuclear factor of activated T cells (NFAT). ANKRD22 plays a significant role in the repair of gastric mucosal damage and may become an ideal novel target for the treatment of gastric mucosal injury. However, there is no systematic introduction to ANKRD22 targeting. Therefore, we wrote this review to elaborate the functional mechanism of ANKRD22 in gastric mucosal injury and to analyze its potential application value in clinical therapy.


Assuntos
Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/lesões , Mucosa Gástrica/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Animais , Biomarcadores , Canais de Cálcio/efeitos dos fármacos , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...